# **Report on Status of Wetland in Madhya Pradesh**

## Preface

Madhya Pradesh is blessed with large number of water bodies, which suffices the need of drinking, irrigation and industrial requirements of water to its people. However like elsewhere in the country, almost all the water bodies of the state especially in urban areas are under serious environmental stress and therefore draw urgent attention for their conservation and sustainable management. The changes in climatic pattern in past few decades have often resulted in scanty rainfall in some parts of the state causing acute shortage of water therein. Usually the urban areas on account of their location face a number of environmental problems. However in recent years in rural part of the state also, deterioration in water quality has been witnessed due to growing anthropogenic pressure. In view of this, the water quality of 120 water bodies in 51 districts of the state which have significant socio-economic & cultural aspects are being analyzed as part of Wetland Rejuvenation Project of Ministry of Environment Forests & Climate Change (MoEF&CC, GOI) to understand the existing limnological status so that these water bodies could be suggested for their best uses as per CPCB best uses standards. In Phase-1 , analysis of 70 water bodies has been completed, while in Phase-2 water quality of 30 water bodies of 17 districts has been done (one time analysis) to ascertain the existing status based on few indicative parameters.

#### Introduction

Reverence for water resources and their conservation is an age-old practice in India. Former rulers have contributed significantly by constructing large number of impoundments/dams, lakes etc for providing drinking water to the people in their capitals and elsewhere. This was particularly necessary in arid, semi arid and other regions of the country with highly erratic rainfall. The state of Madhya Pradesh is bestowed with large number of such water bodies. Most of the water bodies in the state are manmade impoundments which suffice to fulfil the needs of potable water, irrigation, fisheries, industrial and all the other daily needs of the residents of the state with wise uses. However in spite of having innumerable water resources is often facing scarcity of water at many places due to increasing anthropogenic pressure and therefore in order to keep up the pace of over growing demand of water, attention is being drawn towards conservation of impoundments constituted over the periods. The burgeoning population has not only put pressure on the water resources and but also resulted in degradation of water quality as well as shortage of water in almost every urban and rural settlements of the state including many sub urban /rural areas. A big deficit between the demand and supply of water in urban centres is felt which despite all efforts is on a constant rise. Further, the unplanned development of the most of the cities is exerting environmental pressure on the existing aquatic resources, polluting them to an extent that they are no longer usable for human consumption. As a result the quantity of usable water is on a constant decline and on the other hand, the demand is on a constant rise. It is therefore

the need of the hour to conserve the existing water bodies of the state and ensure their sustainability so that the water crisis could be dealt with better management.

## Methodology

Standard procedures as given in APHA, 2010 were used for the sample collection and analysis of water sample. In order to ensure uniformity in the data, three samples were collected each from all the water bodies Table-1, & Fig-1), one from the inlet site, one from pelagic zone and the third one from the outlet site.

| S. No | District   | Name of Water body             | S. No | District    | Name of Water body              |
|-------|------------|--------------------------------|-------|-------------|---------------------------------|
| 1     | Agar Malwa | 1.Ratna Sagar, Agar            | XI    | Shahdol     | 18.Badi Bheeth Talab            |
| П     | Barwani    | 2.Barwani Talab                |       |             | 19.Hanuman Sagar                |
|       |            | 3.Borlay Talab                 | XII   | Seoni       | 20.Bhartendani Talab, Chhapara  |
| III   | Dhar       | 4.Jetpur Talab                 |       |             | 21.Gudhanamal Talab             |
| IV    | Jhabua     | 5.Boda Talab, Meghanagar       | XIII  | Chhindwara  | 22.Kabadiya Talab               |
|       |            | 6.Rana Sagar, Ranapur          |       |             | 23.Nunkhadak Talab              |
| V     | Alirajpur  | 7.Borekhad Talab,              | XIV   | Narsinghpur | 24.Saikheda Talab, Saikheda NP  |
|       |            | 8.Gadat Talab                  | XV    | Dindori     | 25.Chargaon Talab               |
| VI    | Burhanpur  | 9.Dawadiya Pani Lake           |       |             | 26.Dulhari Talab                |
|       |            | 10.Malfalya Lake               | XVI   | Mandla      | 27.Babuda Talab, Bamhani Banjar |
| VII   | Khandwa    | 11.Ardala Talab, Pandhana Town |       |             | 28.Sagar Talab, Bamhani Banjar  |
| VIII  | Khargone   | 12.Bhagwanpura Talab, Bagarda  | XVII  | Balaghat    | 29.Sarathi Reservoir, Tekadi    |
|       |            | 13.Segaon Talab, Mahugaon      |       |             | 30.Vari Reservoir, Lanji        |
| IX    | Ujjain     | 14.Rudra Sagar                 |       |             |                                 |
|       |            | 15.Gowardhan Sagar             |       |             |                                 |
|       |            | 16.Purushottam Sagar           |       |             |                                 |
| Х     | Anuppur    | 17.Dulha Talab                 |       |             |                                 |

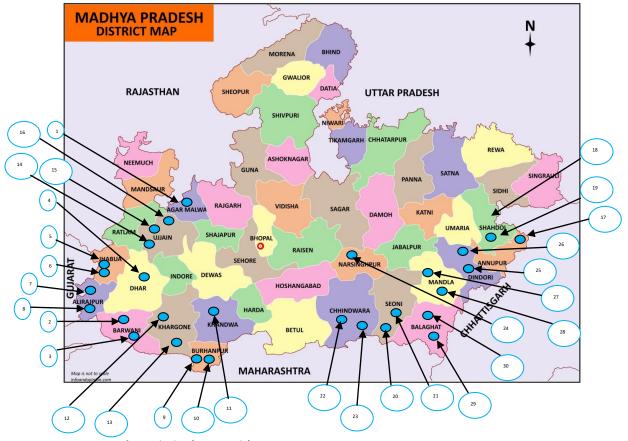



Fig-1 Location of water bodies (Not to Scale) Source : Google map As stated above water samples were collected from 30 water bodies situated in 17 districts. Most of the water bodies during present investigation are from eastern, southern and western part of Madhya Pradesh. All the water bodies were identified based on their socio-economic, cultural, historical, religious importance besides ecological significance. Most of the water bodies investigated during present study situated in rural part of the district and are primarily used for secondary purpose viz. bathing, washing /nistar and also ritual practices.

| S.<br>No | District    | Name of water<br>body           | Type Rural<br>/ Urban | Nature of Water<br>Body<br>(Perennial /<br>Temporal) | Location<br>Latitude        | n Details                   | Use of the Water body                         |  |  |
|----------|-------------|---------------------------------|-----------------------|------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------------------------|--|--|
| 1        | Agar Malwa  | Ratna Sagar, Agar               | Urban                 | Temporal                                             | Latitude                    | Longitude                   | Fish Culture                                  |  |  |
| 2        | Barwani     | Barwani Talab                   | Urban                 | Temporal                                             | _                           | -                           | Irrigation                                    |  |  |
| 2        | Daiwaili    | Borlay Talab                    | Rural                 | Temporal                                             | -                           | -                           | Secondary use                                 |  |  |
| 3        | Dhar        | Jetpur Talab                    | Rural                 | Temporal                                             | -                           | -                           | Irrigation, Fish Culture                      |  |  |
| 4        | Jhabua      | Boda Talab,                     | Urban                 | Temporal                                             | -                           | -                           | Irrigation, Fish Culture,                     |  |  |
| 4        | Jilabua     | Meghanagar                      | Orban                 | remporar                                             | _                           | -                           | Crematorium                                   |  |  |
|          |             | Rana Sagar,<br>Ranapur          | Urban                 | Perennial                                            | -                           | -                           | Secondary use                                 |  |  |
| 5        | Alirajpur   | Borekhad Talab,                 | Urban                 | Temporal                                             | -                           | -                           | Drinking, Fish Culture                        |  |  |
|          |             | Gadat Talab                     | Rural                 | Perennial                                            | -                           | -                           | Secondary use                                 |  |  |
| 6        | Burhanpur   | Dawadiya Pani Lake              | Rural                 | Temporal                                             | 21 <sup>0</sup> 44'11''74 N | 76 <sup>0</sup> 03'55''43 E | Irrigation                                    |  |  |
|          | -           | Malfalya Lake                   | Rural                 | Temporal                                             | 21 <sup>0</sup> 53'84''82 N | 75 <sup>⁰</sup> 96'08''25 E | Drinking, Irrigation                          |  |  |
| 7        | Khandwa     | Ardala Talab,<br>Pandhana Town  | Rural                 | Temporal                                             | 21 <sup>0</sup> 65'08''46 N | 76 <sup>0</sup> 13′54′′16 E | Irrigation, Fish Culture                      |  |  |
| 8        | Khargone    | Bhagwanpura<br>Talab, Bagarda   | Rural                 | Temporal                                             | 21 <sup>0</sup> 76'3'' N    | 75 <sup>0</sup> 74'2'' E    | Irrigation, Fish Culture,<br>Crop cultivation |  |  |
|          |             | Segaon Talab,<br>Mahugaon       | Rural                 | Temporal                                             | 21 <sup>0</sup> 75'9'' N    | 75.44'0 E                   | Irrigation, Fish Culture,<br>Drinking         |  |  |
| 9        | Ujjain      | Rudra Sagar                     | Urban                 | Perennial                                            | 23 <sup>0</sup> 10'48.9'N   | 75 <sup>0</sup> 46'45.07''E | Religious, Secondary<br>use                   |  |  |
|          |             | Gowardhan Sagar                 | Urban                 | Perennial                                            | 23 <sup>0</sup> 11′36.2″N   | 75 <sup>0</sup> 45'50.0''E  | Religious, Secondary<br>use                   |  |  |
|          |             | Purushottam Sagar               | Urban                 | Perennial                                            | 23 <sup>0</sup> 12'11.1'N   | 75 <sup>0</sup> 46'45.7''E  | Religious, Secondary<br>use                   |  |  |
| 10       | Anuppur     | Dulha Talab                     | Urban                 | Perennial                                            |                             |                             | Secondary use                                 |  |  |
| 11       | Shahdol     | Badi Bheeth Talab               | Rural                 | Temporal                                             | 23.18'31N                   | 81.22'05"E                  | Secondary use                                 |  |  |
|          |             | Hanuman Sagar                   | Urban                 | Temporal                                             | 23.68'53N                   | 81.38'90''E                 | Secondary use                                 |  |  |
| 12       | Seoni       | Bhartendani Talab               | Urban                 | Perennial                                            |                             |                             | Irrigation                                    |  |  |
|          |             | Gudhanamal Talab                | Rural                 | Temporal                                             |                             |                             | Secondary use                                 |  |  |
| 13       | Chhindwara  | Kabadiya Talab                  | Urban                 | Temporal                                             |                             |                             | Secondary use                                 |  |  |
|          |             | Nunkhadak Talab                 | Rural                 | Temporal                                             | 22 <sup>0</sup> 17'86''37 N | 78 <sup>0</sup> 32'5705 E   | Irrigation                                    |  |  |
| 14       | Narsinghpur | Saikheda Talab,<br>Saikheda NP  | Urban                 | Perennial                                            | 22 <sup>0</sup> 96′04′′64 N | 78 <sup>0</sup> 57'81''9 E  | Fish Culture                                  |  |  |
| 15       | Dindori     | Chargaon Talab                  | Rural                 | Temporal                                             | 23 <sup>0</sup> 15'62''52 N | 80°69'52''88 E              | Secondary use                                 |  |  |
|          |             | Dulhari Talab                   | Rural                 | Temporal                                             | 23 <sup>0</sup> 04'0839 N   | 80 <sup>0</sup> 58′11′′65 E | Secondary use                                 |  |  |
| 16       | Mandla      | Babuda Talab,<br>Bamhani Banjar | Urban                 | Perennial                                            | 80 <sup>°</sup> 36'41'' N   | 22 <sup>0</sup> 47'71'' E   | Fish Culture,<br>Secondary use                |  |  |
|          |             | Sagar Talab,<br>Bamhani Banjar  | Urban                 | Temporal                                             | 80 <sup>0</sup> 22'14''52 N | 22 <sup>0</sup> 28'48''96 E | Secondary use                                 |  |  |
| 17       | Balaghat    | Sarathi Reservoir,<br>Tekadi    | Rural                 | Perennial                                            | -                           | -                           | Irrigation ,Secondary<br>use                  |  |  |
|          |             | Vari Reservoir, Lanji           | Rural                 | Perennial                                            | -                           | -                           | Irrigation                                    |  |  |

### Table-2 Salient Features

### Table-4 Status of existing Water Quality

| S.<br>No | District    | Name of water body              | рН   |      | Dissolved Oxygen<br>(mg/L) |      | TDS (mg/L) |      | BOD mg/L |      | COD mg/L |          | Total Alkalinity mg/L |           | Total Hardness mg/L |          | s mg/L   | Nitrate mg/L |          |          | Phosphate mg/L |          |          |      |      |      |      |      |      |
|----------|-------------|---------------------------------|------|------|----------------------------|------|------------|------|----------|------|----------|----------|-----------------------|-----------|---------------------|----------|----------|--------------|----------|----------|----------------|----------|----------|------|------|------|------|------|------|
|          |             |                                 | St-1 | St-2 | St-3                       | St-1 | St-2       | St-3 | St-1     | St-2 | St-3     | St-<br>1 | St-<br>2              | St-<br>3  | St-<br>1            | St-<br>2 | St-<br>3 | St-<br>1     | St-<br>2 | St-<br>3 | St-<br>1       | St-<br>2 | St-<br>3 | St-1 | St-2 | St-3 | St-1 | St-2 | St-3 |
| 1        | Agar Malwa  | Ratna Sagar, Agar               | 7.5  | 7.6  | 7.6                        | 5.2  | 6.8        | 7.2  | 214      | 266  | 237      | 1.2      | 0.8                   | 1.6       | 10                  | 10       | 12       | 108          | 106      | 102      | 108            | 98       | 90       | 2.11 | 2.04 | 2.08 | 1.02 | 1.04 | 1.1  |
| 2        | Barwani     | Barwani Talab                   | 8.0  | 8.2  | 8.3                        | 7.6  | 8          | 8.8  | 268      | 244  | 269      | 0.8      | 0.4                   | 0.8       | 14                  | 10       | 12       | 102          | 88       | 110      | 88             | 90       | 102      | 2.24 | 2.17 | 2.22 | 1.96 | 1.84 | 1.0  |
|          |             | Borlay Talab                    | 8.1  | 8.3  | 8.2                        | 8    | 9.6        | 7.6  | 209      | 187  | 211      | 1.8      | 1.2                   | 1.2       | 20                  | 12       | 14       | 96           | 104      | 90       | 110            | 96       | 92       | 2.09 | 1.98 | 1.92 | 1.07 | 1.02 | 1.   |
| 3        | Dhar        | Jetpur Talab                    | 8.0  | 8.2  | 8.3                        | 6.8  | 6.8        | 7.6  | 236      | 219  | 277      | 1.2      | 0.4                   | 0.8       | 12                  | 10       | 12       | 118          | 120      | 112      | 86             | 82       | 88       | 2.17 | 2.04 | 2.11 | 1.11 | 1.07 | 1    |
| 1        | Jhabua      | Boda Talab, Meghanagar          | 7.6  | 7.8  | 7.5                        | 5.2  | 6.8        | 6.4  | 196      | 187  | 169      | 2.4      | 0.8                   | 1.2       | 24                  | 22       | 18       | 108          | 110      | 104      | 80             | 76       | 82       | 2.44 | 2.19 | 2.37 | 1.15 | 1.08 | 1    |
|          |             | Rana Sagar, Ranapur             | 7.7  | 8.1  | 8.3                        | 5.6  | 8          | 8.8  | 138      | 144  | 131      | 0.8      | 0                     | 1.2       | 12                  | 8        | 12       | 122          | 118      | 116      | 106            | 98       | 102      | 1.97 | 1.88 | 1.74 | 0.98 | 0.92 | 0    |
| 5        | Alirajpur   | Borekhad Talab,                 | 8.2  | 8.4  | 8.5                        | 7.2  | 8.0        | 7.6  | 221      | 257  | 239      | 1.8      | 1.4                   | 1.2       | 16                  | 12       | 12       | 107          | 111      | 104      | 102            | 112      | 104      | 2.31 | 2.09 | 2.11 | 1.13 | 1.04 | 1    |
|          |             | Gadat Talab                     | 8.1  | 8.3  | 8.4                        | 7.6  | 8.4        | 8.0  | 224      | 189  | 207      | 1.4      | 0.4                   | 1.2       | 22                  | 18       | 14       | 114          | 110      | 108      | 90             | 84       | 88       | 2.11 | 2.01 | 2.19 | 1.04 | 0.87 | 1    |
| 6        | Burhanpur   | Dawadiya Pani Lake              |      |      |                            |      |            |      |          |      |          |          | La                    | ake was I | Dry: Sam            | ple coul | dn't be  | collected    |          |          |                |          |          |      |      |      |      |      |      |
|          |             | Malfalya Lake                   |      | 7.8  |                            |      | 8.0        |      |          | 528  |          |          | 1.6                   | 1         |                     | 14       |          |              | 112      |          |                | 76       |          |      | 1.37 |      | 1    | 0.82 | T    |
| 7        | Khandwa     | Ardala Talab, Pandhana<br>Town  | 7.7  | 7.6  | 7.5                        | 7.2  | 6.8        | 7.2  | 291      | 295  | 292      | 1.6      | 0.4                   | 1.2       | 12                  | 14       | 10       | 108          | 110      | 104      | 84             | 82       | 78       | 2.98 | 2.79 | 2.81 | 1.44 | 1.32 | 1    |
| 3        | Khargone    | Bhagwanpura Talab,<br>Bagarda   | 7.6  | 7.7  | 7.8                        | 7.2  | 7.6        | 7.2  | 507      | 492  | 498      | 0.4      | 0                     | 0.4       | 18                  | 20       | 16       | 116          | 112      | 120      | 106            | 102      | 98       | 1.96 | 1.92 | 1.90 | 1.04 | 1.02 | 1    |
|          |             | Segaon Talab, Mahugaon          | 7.7  | 7.6  | 7.7                        | 6.8  | 6.8        | 7.2  | 481      | 431  | 647      | 1.6      | 0.8                   | 1.6       | 20                  | 14       | 18       | 112          | 108      | 110      | 106            | 100      | 108      | 2.14 | 2.11 | 2.26 | 1.67 | 1.64 | 1    |
| )        | Ujjain      | Rudra Sagar                     | 9.3  | 9.1  | 8.9                        | NIL  | NIL        | 3.2  | 2742     | 1866 | 1238     | 12       | 16                    | 12        | 30                  | 42       | 28       | 176          | 182      | 162      | 184            | 190      | 186      | 4.22 | 4.58 | 4.66 | 2.19 | 2.38 | 2    |
|          |             | Gowardhan Sagar                 | 9.4  | 8.6  | 8.7                        | 5.2  | NIL        | NIL  | 3142     | 1216 | 2682     | 2.4      | 20                    | 16        | 18                  | 46       | 32       | 166          | 172      | 148      | 176            | 182      | 180      | 4.11 | 4.06 | 4.22 | 2.44 | 2.39 | 2    |
|          |             | Purushottam Sagar               | 9.5  | 9.2  | 9.2                        | 8.0  | 7.6        | 6.4  | 1842     | 1854 | 1852     | 0.4      | 0.4                   | 0.8       | 12                  | 10       | 12       | 128          | 116      | 124      | 168            | 170      | 166      | 3.22 | 3.41 | 3.07 | 1.98 | 2.04 | 2    |
| 10       | Anuppur     | Dulha Talab                     | 9.2  | 8.9  | 8.8                        | 11.6 | 10         | 7.2  | 284      | 282  | 302      | 0        | 0                     | 1.2       | 10                  | 12       | 16       | 112          | 116      | 108      | 112            | 110      | 104      | 1.98 | 1.44 | 1.57 | 0.92 | 0.88 | 0    |
| 11       | Shahdol     | Badi Bheeth Talab               | 9.7  | 9.0  | 8.5                        | 8.8  | 8.4        | 6.8  | 217      | 287  | 281      | 0.8      | 0.4                   | 1.2       | 10                  | 14       | 12       | 126          | 118      | 120      | 110            | 102      | 106      | 1.64 | 1.58 | 1.82 | 0.76 | 0.68 | 0    |
|          |             | Hanuman Sagar                   | 8.8  | 8.7  | 8.5                        | 7.2  | 8.0        | 5.6  | 222      | 211  | 221      | 0.8      | 0                     | 0.4       | 18                  | 12       | 16       | 112          | 120      | 122      | 104            | 112      | 110      | 1.87 | 1.59 | 1.71 | 0.84 | 0.79 | 0    |
| 12       | Seoni       | Bhartendani Talab,<br>Chhapara  | 8.8  | 8.8  | 8.4                        | 10.4 | 11.2       | 10.0 | 320      | 309  | 306      | 0.4      | 0.4                   | 0.8       | 12                  | 12       | 10       | 108          | 114      | 112      | 78             | 80       | 76       | 1.56 | 1.39 | 1.32 | 1.09 | 1.02 | 1    |
|          |             | Gudhanamal Talab                | 8.8  | 8.6  | 8.7                        | 12.0 | 8.0        | 8.8  | 344      | 356  | 357      | 1.6      | 1.2                   | 1.6       | 26                  | 20       | 22       | 127          | 128      | 120      | 86             | 82       | 80       | 2.11 | 1.90 | 1.89 | 1.05 | 1.03 | 1    |
| 13       | Chhindwara  | Kabadiya<br>Talab/kanhargaon    | 8.8  | 8.8  | 8.9                        | 7.6  | 8.0        | 6.4  | 296      | 277  | 278      | 1.2      | 0.4                   | 1.2       | 18                  | 20       | 16       | 120          | 104      | 118      | 92             | 88       | 90       | 2.22 | 2.18 | 2.19 | 1.44 | 1.28 | 1    |
|          |             | Nunkhadak Talab                 | 9.3  | 9.2  | 9.1                        | 6.4  | 8.0        | 7.6  | 84       | 81   | 79       | 2.4      | 1.2                   | 1.6       | 24                  | 20       | 18       | 107          | 110      | 114      | 84             | 80       | 78       | 2.19 | 1.98 | 2.13 | 1.67 | 1.13 | 1    |
| 14       | Narsinghpur | Saikheda Talab, Saikheda<br>NP  | 11.7 | 11.8 | 11.8                       | 18.0 | 30.0       | 30.4 | 535      | 542  | 558      | 1.2      | 1.2                   | 1.6       | 12                  | 10       | 18       | 136          | 142      | 138      | 104            | 112      | 108      | 2.98 | 2.86 | 2.89 | 1.56 | 1.44 | 1    |
| 15       | Dindori     | Chargaon Talab                  | 9.7  | 9.8  | 9.8                        | 6.0  | 8          | 6.4  | 237      | 226  | 222      | 2.8      | 2.0                   | 2.8       | 16                  | 20       | 24       | 107          | 109      | 114      | 66             | 68       | 56       | 2.09 | 2.01 | 1.98 | 1.17 | 1.14 | 1    |
|          |             | Dulhari Talab                   | 9.5  | 9.6  | 9.6                        | 6.0  | 8.4        | 7.2  | 265      | 266  | 266      | 1.6      | 0.8                   | 1.2       | 18                  | 12       | 14       | 112          | 110      | 118      | 72             | 70       | 66       | 2.13 | 2.11 | 2.14 | 1.22 | 1.09 | 1    |
| 6        | Mandla      | Babuda Talab, Bamhani<br>Banjar | 10.2 | 10.3 | 10.4                       | 17.6 | 21.6       | 23.2 | 920      | 928  | 929      | 2.4      | 3.6                   | 1.6       | 22                  | 16       | 20       | 136          | 142      | 144      | 102            | 98       | 108      | 3.19 | 3.11 | 3.24 | 1.97 | 1.84 | 1    |
|          |             | Sagar Talab, Bamhani<br>Banjar  | 8.8  | 9.6  | 9.6                        | 7.2  | 5.6        | 2.4  | 716      | 650  | 666      | 2.0      | 2.4                   | 5.6       | 12                  | 16       | 16       | 128          | 122      | 130      | 86             | 78       | 80       | 2.96 | 2.78 | 2.82 | 1.89 | 1.72 | 1    |
| 17       | Balaghat    | Sarathi Reservoir, Tekadi       | 9.3  | 9.2  | 9.1                        | 8.8  | 8.4        | 7.6  | 152      | 152  | 156      | 2.4      | 1.6                   | 2.0       | 18                  | 20       | 16       | 124          | 116      | 118      | 76             | 70       | 72       | 2.06 | 2.01 | 2.11 | 1.67 | 1.51 | 1    |
|          |             | Vari Reservoir, Lanii           | 9.0  | 9.2  | 9.4                        | 7.6  | 8.0        | 8.0  | 144      | 106  | 107      | 1.2      | 0.8                   | 1.6       | 14                  | 14       | 12       | 120          | 114      | 118      | 68             | 66       | 60       | 2.37 | 2.29 | 2.21 | 1.66 | 1.64 | 1    |

Page 5 of 8

#### **Result and Discussion**

As most of the water bodies in MP are used for multiple purposes, therefore understanding the existing status of the water body is of utmost importance so that an effort can be made for their designated best use viz. potable, irrigation, industrial, tourism etc on the basis of indicative parameters. Hence it is very important to assess the water quality before it is used for drinking, domestic, agricultural or industrial purpose etc. Considering this the present study was conducted to understand the existing status in terms of usability.

The objective of the present study as stated above is to obtain first hand information towards preparation of a "Health Card" based on site visits and scientific investigation through selective indicative parameters. The rationale of the study is to understand the cumulative effect of urbanization vis-a-vis, consequent anthropogenic activities like bathing, washing, religious, agriculture farming including natural variables on water quality of the identified water bodies. The outcome of the study is based on one time analysis of few indicative parameters hence may not be considered as a comprehensive investigation for arriving at any indepth conclusion. The results obtained are discussed below.

During the field investigation most of this rain fed water bodies were found in rural areas and are relatively free from any significant anthropogenic impacts. Barring few water bodies which are used for drinking, all others are basically used for secondary proposes like, bathing, washing, irrigation and fisheries activities (Table-2). The impact of different factors, geo-climatic, anthropogenic etc. of varying degree was observed to affect the water quality in the identified water bodies. The cumulative effect of these variables was observed in few indicative parameters like pH, Dissolved Oxygen (DO), turbidity, conductivity etc.

Hydrogen ion concentration in almost all the identified water bodies was observed to be within basic ranges. Various factors bring about changes in the pH of water. The higher pH values in some water bodies observed also suggests that carbon dioxide, carbonate–bicarbonate equilibrium is affected more due to change in physico-chemical condition. In some cases exceptionally high values of pH were observed (Saikheda Talab, Babuda Talab, Chargaon Talab etc) which can be attributed to very high bio geochemical process due to eutrophication.

Higher values of pH also reflect the productivity of a water body and often correlated with dissolved oxygen concentration. In few water bodies exceptionally high values of dissolved oxygen were recorded (Saikheda Talab Babuda Talab) which are rarely observed in situation like supersaturating under extremely compelling circumstances. These two water bodies may have attained a stage of hypertrophication with excessive inputs of nutrients and organic masses.

In some water bodies higher values of TDS were recorded (Rudra Sagar, Gowardhan Sagar, Purushottam Sagar, Saikheda Talab, Babuda Talab, Sagar Talab ) which could be because of geochemical characteristics of the catchments inflow of sewage and silts besides. TDS is an important parameter for productivity of the aquatic environment. Barring these water bodies a moderate values of TDS & Conductivity have been observed in

almost all other water bodies. Higher values of TDS often increase the nutrient load in an aquatic system and may influence dissolved oxygen concentration of the water body. The distribution of oxygen during the period of investigation depicted a moderate concentration in almost all the water bodies. In some water bodies viz. Rudra Sagar, Gowardhan Sagar, Purushottam Sagar, Nil/lower values obtained may be because of depletion of oxygen content during metabolic activities due to inflow of sewage and nutrient load from its catchment.

Biochemical Oxygen demand in almost all the identified water bodies were observed to be in moderate range except in few lakes (Rudra Sagar and Gowardhan Sagar in Ujjain) where the values were very high compared to resof the water bodies.

While compiling the above indicative parameters with that of **Designated Best Use for surface water resources of CPCB Criteria**, it can be concluded most of the water bodies undertaken under present investigation are relatively free from signification water quality deterioration and can be included either in Class A or B (Table-5). Although all the designated parameters as suggested in the guideline could not be addressed and some of the parameters are overlying (acceptable in multiple categories) but the preliminary investigation conducted during Feb- March 2021 suggests that's these water bodies in general can be utilized for drinking after conventional treatment and other restricted secondary uses like gardening, irrigation etc.

| S. | Name of water                  | рН      | Designated    | DO      | Designated    | Overall | Remark                       |
|----|--------------------------------|---------|---------------|---------|---------------|---------|------------------------------|
| No | body                           | (Range  | Class as per  | mg/l    | Class as per  |         |                              |
|    |                                | Value)  | CPCB best use | (Range  | CPCB best use |         |                              |
|    |                                |         | Criteria**    | Value)  | Criteria**    |         |                              |
| 1  | Ratna Sagar, Agar              | 7.5-7.6 | A/B           | 5.2-7.2 | В             | В       | A: Drinking Water            |
| 2  | Barwani Talab                  | 8.0-8.2 | A/B           | 7.6-8.8 | А             | А       | Source without               |
| 3  | Borlay Talab                   | 8.1-8.2 | A/B           | 7.6-9.6 | А             | А       | Source without               |
| 4  | Jetpur Talab                   | 8.0-8.2 | A/B           | 6.8-7.6 | А             | А       | conventional                 |
| 5  | Boda Talab,<br>Meghanagar      | 7.5-7.8 | A/B           | 5.2-6.4 | В             | В       | treatment but after          |
| 6  | Rana Sagar,<br>Ranapur         | 7.7-8.3 | A/B           | 5.6-8.8 | В             | В       | disinfection                 |
| 7  | Borekhad Talab,                | 8.2-8.5 | A/B           | 7.2-8.0 | А             | А       |                              |
| 8  | Gadat Talab                    | 8.1-8.4 | A/B           | 7.6-8.4 | А             | А       | P. Outdoor bathing           |
| 9  | Dawadiya Pani<br>Lake          |         |               |         |               |         | <b>B.</b> Outdoor bathing    |
| 10 | Malfalya Lake                  | 7.8-8.1 | A/B           | 8.0     | Α             | А       | (Organized)                  |
| 11 | Ardala Talab,<br>Pandhana Town | 7.5-7.7 | A/B           | 6.8-7.2 | A             | A       |                              |
| 12 | Bhagwanpura<br>Talab, Bagarda  | 7.6-7.8 | A/B           | 7.2-7.6 | А             | А       | <b>C.</b> Drinking water     |
| 13 | Segaon Talab,<br>Mahugaon      | 7.6-7.7 | A/B           | 6.8-7.2 | А             | А       | source after<br>conventional |
| 14 | Rudra Sagar                    |         |               |         |               |         | conventional                 |
| 15 | Gowardhan Sagar                | 8.7-9.4 | С             | 0-5.2   | D             | D       | treatment and                |
| 16 | Purushottam Sagar              | 9.2-9.5 | С             | 6.4-8.0 | D             | D       | disinfection                 |
| 17 | Dulha Talab                    | 8.8-9.2 | С             | 7.2-    | С             | С       |                              |
|    |                                |         |               | 11.6    |               |         |                              |

Table-5 Categorization of water bodies under **Designated Best Use for surface water resources of Central Pollution Control Board, New Delhi.** 

| 18 | Badi Bheeth Talab  | 8.5-9.7 | С | 6.8-8.8 | С | С   |                          |
|----|--------------------|---------|---|---------|---|-----|--------------------------|
| 19 | Hanuman Sagar      | 8.5-8.8 | С | 5.6-8.0 | В | С   | <b>D.</b> Propagation of |
| 20 | Bhartendani Talab, | 8.4-8.8 | С | 10.0-   | С | С   |                          |
|    | Chhapara           |         |   | 11.2    |   |     | Wild Life and            |
| 21 | Gudhanamal Talab   | 8.6-8.8 | С | 8.0-    | С | С   | Fisheries                |
|    |                    |         |   | 12.0    |   |     | TISITETICS               |
| ~~ | Kabadiya           | 8.8-8.9 | С | 6.4-8.0 | С | С   |                          |
|    | Talab/Kanhargaon   |         |   |         |   |     |                          |
| 23 | Nunkhadak Talab    | 9.1-9.3 | С | 6.4-8.0 | С | С   | E. Irrigation,           |
| 27 | Saikheda Talab,    | 12      | С | 18-30.4 | D | D   | Industrial Cooling,      |
|    | Saikheda NP        |         |   |         |   |     | 5,                       |
| 25 | Chargaon Talab     | 9.7-9.8 | С | 6.0-8.0 | С | С   | Controlled Waste         |
| 26 | Dulhari Talab      | 9.5-9.6 | С | 6.0-8.4 | С | С   | disposal                 |
|    | Babuda Talab,      | 10      | С | 17.6-   | D | D/E | disposal                 |
|    | Bamhani Banjar     |         |   | 23.2    |   |     |                          |
| 20 | Sagar Talab,       | 8.8-9.6 | С | 2.4-7.2 | D | D/E |                          |
|    | Bamhani Banjar     |         |   |         |   |     |                          |
|    | Sarathi Reservoir, | 9.1-9.3 | С | 7.6-8.8 | С | С   |                          |
|    | Tekadi             |         |   |         |   |     |                          |
| 30 | Vari Reservoir,    | 9.0-9.4 | С | 7.6-8.0 | В | В   |                          |
|    | Lanji              |         |   |         |   |     |                          |

\*\* Designated Best Use for surface water resources (Source CPCB):

**Class of Criteria based on parameter** 

| рН | Class A       | Class B        | Class C       | Class D       | Class E |
|----|---------------|----------------|---------------|---------------|---------|
|    | 6.5-8.5       | 6.5-8.5        | 6-9           | 6.5-8.5       | 6.0-8.5 |
| DO | Class A       | Class B        | Class C       | Class D       | Class E |
|    | 6mg/l or more | 5 mg/l or more | 4mg/l or more | 4mg/l or more |         |

#### Inference

In Madhya Pradesh most of lakes, tanks, ponds etc. situated in urban area are in the state of eutrophication. Thus, availability of the utilizable water has declined sharply in urban centers of the state. Fortunately in rural part of the state the situation is not that grave as has been reflected in present investigation. However due to increased anthropogenic activities even in rural areas there may be considerable increase in generation of waste water which might find its place in adjoining rural water resources. Few of the water bodies were observed to have similar environmental problems as commonly witnessed in urban lakes. All the water bodies have common symptoms of sewage inflow, dumping of solid wastes, and encroachment in the fringe area, siltation, weed infestation and religious activities. These ill effects are visible in few water bodies of the state especially in Ujjain as revealed by this study. It is therefore essential to conserve these important aquatic resources with appropriate conservation measures and promoting awareness activities. The present study gives a first insight on the water quality of these precious aquatic resources. These water resources are the precious assets of the state and the wider vision of "Atmanirvar" of the state needs to incorporate the conservation and preservation of these aquatic water resources too. Some of the water bodies covered under the study are in pathetic environmental condition and require immediate attention.

#### Acknowledgement:

Team from ERL EPCO is grateful to Executive Director, EPCO for consistent support and encouragement, Officer-in-charge, Shri Lokendra Thakkar for his valuable and timely guidance and to all the district officials/local bodies concerned for their unconditional timely help and logistic support.